Testing the CVC Hypothesis in the Beta Decay of ¹⁴O

J. T. Burke^{1,2}, S. Freedman^{1,2}, B. Fujikawa², P. Vetter², W.T. Winter^{1,2}, D. Wutte²

The Conserved Vector Current (CVC) hypothesis, of the electroweak theory, predicts a distortion of the allowed beta decay spectrum. CVC modifies the allowed spectrum by introducing an energy dependent shape factor (a_{\pm}) that is directly related to the width of the electromagnetic M1 transition in the isobaric analog state. CVC has been tested in the A = 12 (12 B, 12 C, 12 N) system. Several experiments have arrived varying conclusions. An experiment in the A = 14 (14 C, 14 N, 14 O) system is desirable due to the large shape factor predicted by CVC, a = 5.5 % per MeV. The experiment has been difficult to perform to high precision due to the small branching ratio to the 0^+ –>1 $^+$ branch of approximately 0.6 percent, see decay scheme below [1].

We will measure the shape factor using a flat-field magnetic spectrometer with a multi-wire proportional chamber detector. The acceptance of the spectrometer is on the order of 10^{-4} . In order to test the theory to the level of the theoretical calculations we require a point like source of ¹⁴O of at least 10^7 atoms for several days. Due to the short, 70 second, half-life of ¹⁴O it must be produced on-line at the 88" Cyclotron. The ¹⁴O is produced by $^{12}\text{C}(^3\text{He,n})^{14}\text{O}$ reaction.

The target consists of a low density carbon aerogel which is resistively heated to 2000 degrees Celsius. The ¹⁴O bonds to ¹²C in the target forming ¹²C¹⁴O molecule predominately.

The ¹²C¹⁴O diffuses from the target into a transfer line connected to the electron cyclotron resonance Ion Source for Radioactive ISotopes (IRIS ECR). The ¹²C¹⁴O is dissociated, ionized, and extracted at up to a 30 kV. The ion beam travels through an analyzing magnet and the ¹⁴O isotope is focused and embedded into a thin beryllium foil, forming a fixed point like source for the experiment.

During 2000 we tested the new carbon aerogel target. The reduced diffusion time out of the target resulted in a factor of 10 increase in released activity. IRIS was fitted with a quartz liner and improved support gas injection system which improved the ionization efficiency of $^{12}C^{14}O$ by a factor of 4. IRIS can now produce a beam of $^{14}O^{1+}$ ions with an average intensity of $2x10^7$ atoms per second. The spectrometer is going through its final testing stages and should be ready for the CVC experiment by mid 2001.

Footnotes and References

- 1 Physics Department University of California Berkeley
- 2 Nuclear Science Division Lawrence Berkeley National Laboratory
- 1. G.S. Sidhu and J.B. Gerhardt, Phys. Rev. 148, 1024 (1966).